Constraint Reduction using Marginal Polytope Diagrams for MAP LP Relaxations
نویسندگان
چکیده
LP relaxation-based message passing algorithms provide an effective tool for MAP inference over Probabilistic Graphical Models. However, different LP relaxations often have different objective functions and variables of differing dimensions, which presents a barrier to effective comparison and analysis. In addition, the computational complexity of LP relaxation-based methods grows quickly with the number of constraints. Reducing the number of constraints without sacrificing the quality of the solutions is thus desirable. We propose a unified formulation under which existing MAP LP relaxations may be compared and analysed. Furthermore, we propose a new tool called Marginal Polytope Diagrams. Some properties of Marginal Polytope Diagrams are exploited such as node redundancy and edge equivalence. We show that using Marginal Polytope Diagrams allows the number of constraints to be reduced without loosening the LP relaxations. Then, using Marginal Polytope Diagrams and constraint reduction, we develop three novel message passing algorithms, and demonstrate that two of these show a significant improvement in speed over state-of-art algorithms while delivering a competitive, and sometimes higher, quality of solution.
منابع مشابه
An LP View of the M-best MAP problem
We consider the problem of finding the M assignments with maximum probability in a probabilistic graphical model. We show how this problem can be formulated as a linear program (LP) on a particular polytope. We prove that, for tree graphs (and junction trees in general), this polytope has a particularly simple form and differs from the marginal polytope in a single inequality constraint. We use...
متن کاملVariational inference in graphical models: The view from the marginal polytope
Underlying a variety of techniques for approximate inference—among them mean field, sum-product, and cluster variational methods—is a classical variational principle from statistical physics, which involves a “free energy” optimization problem over the set of all distributions. Working within the framework of exponential families, we describe an alternative view, in which the optimization takes...
متن کاملApproximate Inference in Graphical Models using LP Relaxations
Graphical models such as Markov random fields have been successfully applied to a wide variety of fields, from computer vision and natural language processing, to computational biology. Exact probabilistic inference is generally intractable in complex models having many dependencies between the variables. We present new approaches to approximate inference based on linear programming (LP) relaxa...
متن کاملOn Iteratively Constraining the Marginal Polytope for Approximate Inference and MAP
We propose a cutting-plane style algorithm for finding the maximum a posteriori (MAP) state and approximately inferring marginal probabilities in discrete Markov Random Fields (MRFs). The variational formulation of both problems consists of an optimization over the marginal polytope, with the latter having an additional non-linear entropy term in the objective. While there has been significant ...
متن کاملCharacterizing Tightness of LP Relaxations by Forbidding Signed Minors
We consider binary pairwise graphical models and provide an exact characterization (necessary and sufficient conditions observing signs of potentials) of tightness for the LP relaxation on the triplet-consistent polytope of the MAP inference problem, by forbidding an odd-K5 (complete graph on 5 variables with all edges repulsive) as a signed minor in the signed suspension graph. This captures s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1312.4637 شماره
صفحات -
تاریخ انتشار 2013